End Term Examination Classical Mechanics

B. Math., 2nd Year, July - November 2024, Date and Time: November 18, 2024, 10 a.m, Duration: 3 hours, Total points: 80

You must provide clear argument(s) for all steps for full grade. An answer with zero explanation, even if correct, will not receive any credit.

1. A block of mass m is initially held motionless on a frictionless inclined plane of incline θ . The inclined plane (whose mass is M(>m)) itself rests on a frictionless horizontal surface. The block is now released. Find the acceleration of the inclined plane.

10 points

- 2. A vertically upright circular hoop of radius R rotates about the vertical diameter with an angular frequency ω . A bead of mass m is free to slide along the hoop without friction. Let $\theta(t)$ be the angle of the bead sustained at the center of the hoop as measured from the downward vertical axis.
 - (a) Find the equation of motion of the generalized coordinate θ .
 - (b) Find the points of equilibrium of the bead.
 - (c) Find the frequency of small oscillations about the stable equilibrium point(s).

7 + 5 + 8 = 20 points

3. Imagine a particle of mass m moving in a central potential of the form $-\alpha/r^2$, $\alpha > 0$. The value of the angular momentum is fixed at L. In an E - r diagram, analyze the motion for the various values of total energy E and α qualitatively.

15 points

4. Consider the case of the double pendulum - the top pendulum is a massless rod of length l_1 with a point mass m_1 affixed at the bottom; the pendulum itself is fixed immovably at the top. The bottom pendulum is affixed to m_1 at the top, and is itself a massless rod of length l_2 , with a point mass

 m_2 at the bottom. The double pendulum moves in a vertical plane, and the customary general co-ordinates are the angles the rods make with the downward vertical.

- (a) Using the co-ordinates as above, derive the equations of motion of the double pendulum.
- (b) Make a small-angle approximation up to linear order and find the approximate equations of motion.
- (c) Use $l_1 = l_2 = l$, along with the small angle approximation. Find the normal frequencies of oscillation.
- (d) Discuss the motion in the following cases: $m_1 \gg m_2$ and $m_1 \ll m_2$ (Hint: for $m_1 \gg m_2$, write $m_2/m_1 = \epsilon \ll 1$ and expand the frequencies up to leading order in terms of ϵ . Similarly for the other limit.)

7 + 5 + 5 + 8 = 25 points

- 5. Imagine a horizontal disc of radius R rotating in a counter clockwise direction with constant angular velocity ω . Imagine there is a radial line painted on the disc from the center to the rim. A person, initially standing on the rim edge of the line walks towards the center of the disc, with a radial speed v in the rotating frame, all the while being on the line.
 - (a) To an inertial observer, what are the horizontal forces acting on the person? Specify their directions as well.
 - (b) To an observer attached to the disc, find the horizontal forces acting on the person along with their magnitude and direction.
 - (c) Find $d\vec{L}/dt$ in the inertial (lab) frame; \vec{L} being measured from the center of the disc. Which external force is responsible for a non-zero $d\vec{L}/dt$, if any?

3 + 3 + 4 = 10 points